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ABSTRACT

Most real-world negotiation scenarios involve multiple, inter-
dependent issues. These scenarios are specially challenging
because the agents’ utility functions are nonlinear, which
makes traditional negotiation mechanisms not applicable.
Even mechanisms designed and proven useful for nonlinear
utility spaces may fail if the utility space is highly nonlinear.
For example, simulated annealing has been used successfully
in bidding based negotiations with constraint-based utility
spaces to identify high utility regions in the contract space,
and to send these regions as bids to a mediator. In this pa-
per, we will show that the performance of this approach de-
creases drastically in highly nonlinear scenarios, and propose
alternative mechanisms for the bidding process which take
advantage of the constraint-based preference model. Also,
we propose a probabilistic search method for the mediator
to improve the scalability of the deal identification process,
and an iterative, expressive negotiation protocol to give feed-
back to the agents in case no deals have been found with the
initial bids. The experiments show that the proposed mech-
anisms yield better results than the previous approach in
highly nonlinear negotiation scenarios.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—heuristic methods; 1.2.11 [Artificial
Intelligence|: Distributed Artificial Intelligence—multia-
gent systems; 1.2.11 [Artificial Intelligence]: Distributed
Artificial Intelligence—coherence and coordination

General Terms

Algorithms, Design, Experimentation

Keywords

multi-agent systems, multi-issue negotiation, highly-nonlinear

utility spaces

1. INTRODUCTION

Integrative negotiation approaches intend to allow nego-
tiating agents to search for joint gains when pursuing an
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agreement [12]. In the last years, there has been an increas-
ing interest in complex negotiations scenarios where agents
negotiate about multiple, interdependent issues [9]. These
scenarios are specially challenging, since issue interdepen-
dency yields nonlinear utility functions for the agents, and
thus the classic mechanisms for linear negotiation models
are not applicable. In particular, this work focuses on mul-
tilateral mediated negotiation, where several agents try to
reach an agreement over a range of issues using a bidding
based negotiation protocol with the aid of a mediator. The
utility spaces for the agents are generated using weighted
constraints, which results in nonlinear utility functions.

In [8], a bidding mechanism is proposed, which is based on
taking random samples of the contract space and applying
simulated annealing to these samples to identify high utility
regions for each agent, sending these regions as bids to a me-
diator, and then performing a search in the mediator to find
overlaps between the bids of the different agents. Experi-
ments show that this approach achieves high effectiveness
(measured as high optimality rates and low failure rates for
the negotiations) in the evaluation scenario they describe
(Section 2). However, as we will show empirically in Section
6.2, this approach performs worse as the circumstances of
the scenario turn harder (that is, when the utility functions
are highly nonlinear). Under these circumstances, the fail-
ure rate for the simulated annealing based bidding strategy
increases drastically, raising the need for an alternative ap-
proach for highly nonlinear scenarios, like B2B interactions
or distributed automated control systems.

Furthermore, as described in [8], their bidding-based ne-
gotiation protocol presents some scalability concerns due to
the extensive search for overlaps performed in the mediator,
which finally limits the maximum number of bids each agent
may send depending on the number of agents in the negoti-
ation. In this paper, we intend to address these problems in
the following way:

e We propose three alternative mechanisms to simulated
annealing for each agent to define bids based on its
preferences (Section 3): a probabilistic greedy search,
an approach based on integer programming [16], and a
search based on finding maximum weight independent
sets [1] within the constraint space of the agents. All
three mechanisms avoid random sampling of the con-
tract space, and directly sample the preference space
(i.e. constraints) of the agent (which is significantly
smaller). In addition, the mechanisms take into ac-
count both the utility of a bid for an agent and its vi-
ability (a measure of the likelihood of the bid to yield
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a deal). We will show that these bidding mechanisms
significantly improve both optimality rate and failure
rate over the simulated annealing approach in highly
nonlinear scenarios.

‘We propose a heuristic search mechanism for the medi-
ator which lowers the scalability problem while achiev-
ing acceptable optimality rates (Section 4).

We propose an iterative, expressive protocol for the
negotiation process, where the mediator may request
the agents to relax some of their bids to lead the ne-
gotiations to zones in the contract space where higher
joint gains may be reached (Section 5). We will show
that this protocol allows for even lower failure rates
when combined with the bidding mechanisms above.

A highly-nonlinear simulation scenario has been devised
to validate our hypotheses and evaluate the effects of our
contributions. This scenario is described in Section 6, along
with the discussion of the results obtained. Finally, our pro-
posal is briefly compared to the most closely related works in
the state-of-the-art (Section 7). The last section summarizes
our conclusions and sheds light on some future research.

2.
LINEAR UTILITY SPACES

2.1 Constraint-based Nonlinear Utility Spaces

Nonlinear agent preferences can be described by using dif-
ferent categories of functions, like K-additive utility func-
tions [2], bidding languages [15], or weighted constraints
[7]. In this work we focus on nonlinear utility spaces gen-
erated by means of weighted constraints. In these cases,
agents’ utility functions are described by defining a set of
constraints. Each constraint represents a region with one or
more dimensions, and has an associated utility value. The
number of dimensions of the space is given by the number of
issues n under negotiation, and the number of dimensions of
each constraint must be lesser or equal than n. The utility
yielded by a given potential solution (contract) in the util-
ity space for an agent is the sum of the utility values of all
the constraints that are satisfied by that contract. Figure 1
shows a very simple example for two issues and three con-
straints: a unary constraint C'l and two binary constraint
C?2 and C3. The utility values associated to the constraints
are also shown in the figure. In this example, contract =
would yield a utility value for the agent u(xz) = 15, since
it satisfies both C'1 and C'2, while contract y would yield a
utility value u(y) = 5, because it only satisfies C'1. It can
also be noted that unary constraint C'l can be seen as a bi-
nary constraint where the width of the constraint for issue
2 is all the domain of the issue, so we can generalize and say
that all constraints have n dimensions.

More formally, we can define the issues under negotiation
as a finite set of variables z = {x;|i = 1,...,n}, and a con-
tract (or a possible solution to the negotiation problem) as
a vector s = {xf|i = 1,...,n} defined by the issues’ values.
Issues take values from the domain of integers [0, X].

Agent utility space is defined as a set of constraints C' =
{ck|k = 1,...,1}. Each constraint is given by a set of in-
tervals which define the region where a contract must be
contained to satisfy the constraint. In this way a constraint
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Figure 1: Example of a utility space with two issues
and three constraints.
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c is defined as ¢ = {I{|i = 1,...,n}, where I} , 2T

defines the minimum and maximum values for each issue to
satisfy the constraint. Constraints defined in this way de-
scribe hiper-rectangular regions in the n-dimensional space.
Each constraint ¢, has an associated utility value u(cx).

A contract s satisfies a constraint c if and only if xj €
IVi. For notation simplicity, we denote this as s € x(ck),
meaning that s is in the set of contracts that satisfy cy.
An agent’s utility for a contract s is defined as u(s)
D epeClsen(ey) W(ck), that is, the sum of the utility values of
all constraints satisfied by s. This kind of utility functions
produces nonlinear utility spaces, with high points where
many constraints are satisfied, and lower regions where few
or no constraints are satisfied.

2.2 Simulated Annealing in Bidding-based Non-
linear Negotiation

Ito et al. [8] presented a bidding-based protocol to deal
with nonlinear utility spaces generated using weighted con-
straints. The protocol consists of the following four steps:

1. Sampling: Each agent takes a fixed number of ran-
dom samples from the contract space, using a uniform
distribution.

. Adjusting: Each agent applies simulated annealing to
each sample to try to find a local optimum in its neig-
borhood. This results in a set of high-utility contracts.

. Bidding: Each agent generates a bid for each high-
utility, adjusted contract. The bids are generated as
the intersection of all constraints which are satisfied by
the contract. Each agent sends its bids to the media-
tor, along with the utility associated to each bid.

. Deal identification: The mediator employs breadth-
first search with branch cutting to find overlaps be-
tween the bids of the different agents. The regions of
the contract space corresponding to the intersections
of at least one bid of each agent are tagged as potential
solutions. The final solution is the one that maximizes
joint utility, defined as the sum of the utilities for the
different agents.
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Figure 2: Example of a nonlinear utility space gen-
erated by using ‘“wide’ constraints.

The protocol is evaluated in a nonlinear scenario for differ-
ant number of agents and issues, and it achieves preat re-
sults in terms of optimality (measured as the ratio between
the solutions found using the protocol and the optimal solu-
tion computed using complete informetion) and failure rate
(messured ag the ratio between unsucecessful negotiations
and total nepotiations).

The use of weighted constraints generates a “bumpy™ util-
ity space, with many peaks and valleys, However, the degres
of “bumpiness” is highly dependent on the way the constraint
set iz generated, and specially on the average width of the
constraints. In [8], constraints are penerated by choosing the
width of sach constraint in each issue randormly within the
[2,7] interval. Since the domain is chogen to be [0,9], this gen-
erates rather “wide” constraints. Figure 2 shows an example
of the resulting two-dimensional utility space for 50 binary
constraints generated in this way. On the other hand, Figurs
3 shows an utility space obtained using “narrow” congtraints,
choosing their widths from the [2,5] interval. Comparing
both figures we can ses that, though both wutility spaces are
nonlinear, the space generated using narrow constraints is
more complex, with narrower peaks and walleys. As the
number of issues under consideration increases, the differ-
ences between heving wide or narrow constraints becoms
more relevant. Though the approach proposed in [8] works
perfectly in scenarios like the example shown in Figure 2, we
will see that its performance (in terms of optimality and fail-
ure rate) decreases drastically in highly nonlinesr scenarios
defined using nerrow constreints, and therefore an alterna-
tive approach is needed to deal with these highly nonlinear
utility spaces.

3. BIDDING MECHANISMS FORHIGHLY-
NONLINEAR UTILITY SPACES

3.1 Constraint/Bid Quality Factor

If we compare the utility spaces shown in Figures 2 and
3, we can see that the main difference between them (apart
from the absolute utility values, but they have no effect in
optimality) is the width of the pesks. Highly-nonlinear sce-
narios will yield narrower peaks. Since simulated annealing
leads agents to choose those peaks (or high-utility regions)
as bids, the result is that narrower bids will be sent to the
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Figure 3: Example of a highly nonlinear utility space
generated by using “narrow” constraints.

mediator. Assuming uniformly generated utility spaces, the
width of the bids (or more genersally, the volume of the bids
in the n-dimensional space), will directly impact the proba-
bility thet the bid overlaps & bid of another agent, and thus
the probability of the bid resulting in e deal Intuitively,
an agent with no knowledge of the other apents’ preferences
should try to adequately balance the utility of their bids
(to maximire its own profit) and the volume of those bids
(to meximize the probability of o successful negotiation),
To represent this formally, we define the guality factor of &
congtraint or bid as Q. = u® - of, where w, and v, are, re-
spectively, the utility and volume of the bid or constraint o,
and o and J ars parameters which model the importance the
apent, gives to the final utility or the probability of reaching
an agresment, respectively. This quality factor iz used in the
different mechanisms described in the following sections,

Our hypothesis is that by taking into account this qual-
ity factor in the bidding mechanisms, with adequate values
for the parameters o and &, will result in a better balance
between utility and “width” in apent bids, and thus nego-
tiations will yield higher optimality rates and lower failure
rates.

3.2 Probabilistic Greedy Search

The first mechanism we propose for bidding is & quality
factor hill-climbing based on a probabilistic greedy search.
A firgt congtraint iz randomly extracted from the apent’s set
of constraints Selection is performed so that the probability
of a constraint being chogen is higher for high-Q constraints.
This constraint iz used to generate an initial bid & Then,
at each iteration, a new constraint ¢ is randomly extracted
from the remaining set, and its intersection with the bid &
ig computed. Ifthe intersection improves the quality factor,
then the wvalue of & iz updated to this intersection and the
alporithm iterates again, The algorithm terminates when
the newly computed intersection does not improve &) fur-
ther or when the set of remaining constraints iz empty, The
alporithm is repeated to generate a fixed number »e of bids.
This is formally shown in Algorithm 1.

3.3 Binary Integer Programming and Tour-
nament selection

In [8], the bidding process (more specifically, the sampling,
adjusting and bidding process they describe) is seen as o
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Input:
C = {cklk =1,...,1}: agent set of constraints
Output: b: new bid
C' =C;
b = extract_random(C");
while C’' # () do

¢ = extract_random(C");

b =bN¢

if Qy > Qb then

| b=V

end
Algorithm 1: Probabilistic greedy search bidding

nonlinear optimization problem, where the agent searches
for high utility points in the n-dimensional space with do-
main [0, X]. If for example, we consider a 10-issue negoti-
ation problem where issues take values from the domain of
integers [0, 9], this produces a space of 10'° possible con-
tracts, which makes exhaustive evaluation unfeasible, and
raises the need to use heuristic techniques like simulated an-
nealing. However, the agent utility space is not arbitrary,
but has been generated using a finite set of weighted con-
straints. This can be taken into account to transform the
optimization problem into another by looking at it from a
different perspective.

The bidding process is not the search for a contract, but
the search for a subset of the constraint set C' which satisfies
two properties:

1. The set maximizes the sum of the utility values of the
constraints in it.

2. The intersection between all constraints in the set is
not null.

Since each constraint in the set C' = {cx|k = 1, ...,1} may
be chosen to be part of the bid subset, the selection of con-
straints may be expressed as a binary vector b = {bx|k =
1,...,0;bx € [0,1]}, where by = 1 if constraint ¢ is included
in the bid subset, and otherwise by = 0. The utility func-
tion can be reformulated as u(s) = >, 4, u(ck) - b, which
is a linear function in an /-dimensional space with domain
[0,1]. Of course, not all b vectors are possible, since the in-
tersection of all constraints in the bid cannot be null. For
hiper-rectangular constraints, this can be ensured by adding
the following linear inequations to the problem:

bi +b; < 1¥i,jlei [ )e; =0

This is a classic binary integer programming problem [16],
which can be solved by using, for example, a LP-based
branch and bound tree-search algorithm [10]. However, this
reformulation of the bidding problem is not in itself a suit-
able solution, since it has some serious drawbacks:

1. Binary integer programming problems are classified as
NP hard.

2. Cardinality of the solution space is 2!, which for high
number of constraints can be as intractable as exhaus-
tive contract search.

3. The LP-based branch and bound algorithm is deter-
ministic, so for a given set of constraints we would
obtain always the same bid.

4. Since only absolute constraint utility (as opposed to
quality factor) is used to compute the utility function,
the bid found would be the global maximum of the util-
ity space, which would probably has the same “narrow-
ness” problem that we found in simulated annealing.

The computationally unfeasibility concerns may be ad-
dressed by limiting the maximum number of nodes the algo-
rithm searches in the tree, or the maximum number of itera-
tions performed at any node. This, however, does not solve
the problem of the algorithm deterministically generating
just one bid. It does not solve either the “narrowness” prob-
lem. To address these issues, we propose to use a tournament
selection [14] based on the constraint quality factor @, that
is, to apply the binary integer programming approach to a
subset of constraints C' = {c;|k =1, ...,nc;n. < l;c}, € C}.
The constraints cj, are randomly chosen from the constraint
set C, and the selection is performed so that higher-Q bids
have more probability of being chosen. In this way, a differ-
ent constraint subset C” is passed to the algorithm at each
run, which will result in different, non-deterministic bids.
Furthermore, since high-() constraints are more likely to be
selected, the average width for the resulting bids will be
higher.

3.4 Maximum Weight Independent Set and the
Max-product Algorithm

The constraint-based agent utility space may also be seen
as a weighted undirected graph. Consider again the simple
utility space example shown in Figure 1. Think about each
constraint as a node in the graph, with an associated weight
which is the utility value associated to the constraint. Now
we will connect all nodes whose corresponding constraints
are incompatibles, that is, they have no intersection. The
resulting graph is shown in Figure 4.

To find the highest utility bid in such a graph can be seen
as finding the set of unconnected nodes which maximizes the
sum of the nodes’ weights. Since only incompatible nodes
are connected, the corresponding constraints will have non-
null intersection. In the example, this would be achieved by
taking the set {C'1, C2}. The problem of finding a maximum
weight set of unconnected nodes is a well-known problem
also known as maximum weight independent set (MWIS).
Though MWIS problems are also NP-hard, in [1], a message
passing algorithm is used to estimate MWIS. The algorithm,
which is a reformulation of the classical max-product algo-
rithm called “min-sum” works as follows:

1. Initially (¢ = 1), each node 7 sends its weights w; to its
neighbors N (i) as messages.

miﬁj =w;Vj € N(7)

2. At each iteration ¢, each node i updates the message
to send to each neighbor j by substracting from its
weight w; the sum of the messages received from all
other neighbors ezcept j. If the result is negative, a
zero value is sent as message.

k#£j,kEN (i)

t
m;_; = max (0, w; —

3. Upon receiving the messages, a node is included in the
estimation of the MW IS if and only if its weight is
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Figure 4: Weighted undirected graph resulting from
the utility space in Figure 1.

greater than the sum of all messages received from its
neighbors.

MWIS' = {ilw; > > mi_;}
keN(3)

4. Steps 2 and 3 are repeated until MW IS converges or
the maximum number of iterations is reached.

We can easily follow the algorithm steps for the example
graph in Figure 4:

1.t=1=mi_3=5 mi 5 =10 mi., =mi_,=12.
2. t=2=mi_3=5mi_5=10,mi_, =2m3_,=".
3. Taking into account the received messages,

MWIS* ={1,2}
4. t=3=m}_s=5m3_s=10,mi_, =2m3_,="1.

5. Taking into account the received messages,

MWIS® = {1,2}
6. Since MW IS has converged, the algorithm terminates.

Directly applying this algorithm to the bidding process
has similar concerns to the ones raised by the binary in-
teger programming approach. When the number of nodes
in the tree is high, the number of iterations for the algo-
rithm to converge may become very large. Again, the al-
gorithm is deterministic, so only one bid can be generated
for a given set of constraints. In addition, this approach
does not consider the volume of the constraints either. Tak-
ing this into account, we propose to combine this algorithm
with the Q-based tournament selection discussed in the pre-
vious section, and thus apply the algorithm to a different,
probabilistically generated, subset of constraints to create
each bid.

4. A PROBABILISTIC MECHANISM FOR
DEAL-IDENTIFICATION

Scalability is identified as one of the main drawbacks in
a bidding based negotiation protocol [8]. Once agents have
placed their bids, the mediator performs an exhaustive search

1061

for overlaps between the bids using a breadth-first algorithm
with branch cutting. In a worst case, this means searching
through a total of n;® bid combinations, where n; is the
number of bids per agent, and n, is the number of negotiat-
ing agents. In the experiments, the authors limit the number
of combinations to 6,400,000. This means that, for 4 ne-
gotiating agents, the maximum number of bids per agent is
"¢/6400000 = 50. This limit becomes harder as the number
of agents increases. For example, for 10 agents, the limit is
4 bids per agent, which drastically reduces the probability
of reaching a deal. This is specially true for highly-nonlinear
utility spaces, where the bids are narrower.

To address this scalability limitation, we propose to per-
form a probabilistic search in the mediator instead of an
exhaustive search. This means that the mediator will try
a certain number n,. of randomly chosen bid combinations,
where ng. < nf". In this way, ns. acts as a performance
parameter in the mediator, which limits the computational
cost of the deal identification phase. Of course, restricting
the search for solutions to a limited number of combinations
may cause the mediator to miss good deals. Taking this into
account, the random selection of combinations is biased to
maximize the probability of finding a good deal. Again, the
parameter used to bias the random selection is @, so that
higher-@Q bids have more probability of being selected for bid
combinations at the mediator.

5. AN EXPRESSIVE, ITERATIVE PROTO-
COL FOR NEGOTIATION

In highly-nonlinear utility spaces, one of the main prob-
lems of the basic bidding-based negotiation is that it uses a
one-shot protocol. The agents send their bids to the medi-
ator, the mediator search for solutions, and the negotiation
ends. If a solution has been found, the negotiation is success-
ful. If not, the only possibility is repeating the process until
it succeeds. In scenarios with “wide” high-utility regions in
the agent’s utility spaces, this is hardly a problem, since
the probability of the mediator finding a solution is high.
In highly-nonlinear scenarios, however, since high-utility re-
gions are narrower, it is more likely that a single shot of
the algorithm yields no solution. In these cases, it would
be desirable that the agents would be able to “learn” from
previous interactions in order to issue bids that are more
likely to reach an agreement. For this to be possible, two
mechanisms are needed: a mechanism for the mediator to
give feedback to the negotiating agents, and a mechanism
for the agents to use this feedback in bid generation.

We propose to achieve mediator expressive capability to
give feedback to negotiating agents by using relax require-
ments, which express which bids should relax (or widen) an
agent to increase the probability of reaching an agreement.
A relaz requirements is defined as preq = {bilt =1, ...,p;p <
np; b; € B}, where B is the set of bids issued by the agent
and b; are the bids the agent is asked to relax. These bids
are selected by computing the deal volume & of each bid,
which is defined as the volume that each bid should have to,
assuming its center remains unchanged, intersect at least
one bid of each one of the other agents. The deal volume of
each bid is calculated, and those bids with § under a given
threshold are included in the relax requirement.

Once the negotiating agents have received the relax re-
quirements, the bid relax process begins. Different strate-
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gies may be used to relax the bids specified by the mediator.
For this work, we have used a simple minimum-concession
strategy. This means that a negotiating agent relaxes a bid
by removing from the bid the constraint which yields less
utility. This can be expressed formally by defining the re-
laxed bid as b’ = {{ck}|k = 1.0, cx € bk # ju; =
min (u;]i = 1...n%)}. The new bid set is comprised of the re-
laxed bids as well as newly generated-bids in order to com-
plete the maximum number of bids ny.

Summarizing, the new, expressive, iterative negotiation
protocol consists of the following four steps:

1. Bidding: Each agent a generates a bid set B* of ny
bids, using one of the mechanisms described in Section
3.

2. Deal identification: The mediator employs the prob-
abilistic search method described in Section 4 to find
overlaps between the bids of the different agents. If a
solution is found, the algorithm terminates.

3. Feedback: The mediator computes relax requirements
p® for each agent.

4. Adaptive Bidding: Each agent computes a new set of
bids B’* taking into account the feedback provided by
the mediator.

Steps 2 to 4 are repeated until a solution is found or a dead-
line (defined as a time limit or as a maximum number of
iterations) expires.

6. EXPERIMENTAL EVALUATION

The hypotheses of this work are that the proposed mecha-
nisms provide an improvement to the optimality and failure
rate of the negotiation process over the previous work de-
scribed in Section 2.2. To evaluate this, we have reproduced
the experiments performed in [8], comparing the results of
their approach with the results obtained applying the pro-
posed mechanisms.

6.1 Experimental Settings

Several experiments have been conducted to validate our
hypotheses. In each experiment, we ran 100 negotiations
between agents with randomly generated utility functions.
Each negotiation was repeated eight times using the same
utility functions:

e one for the simulated annealing based approach,

e one for each one of the bidding mechanisms proposed,
combined with our probabilistic mediator,

e and one for each one of the bidding mechanisms (in-
cluding simulated annealing) using our expressive pro-
tocol.

For each set of utility functions we applied a nonlinear op-

timizer to the sum of all agents’ utility functions to find the

optimal contract and its associated joint utility value, dis-

carding all contracts with utility below a given reservation

value r, for any of the agents. This optimal contract was

used to assess the optimality of the different approaches.
We ran experiments with the following parameters:

e Number of agents n, = {4,...,10}. Number of issues n
= {4,...,10}. Domain for issue values [0, 9].
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e [ uniformly distributed random generated constraints
per agent: 5 unary constraints, 5 binary contraints, 5
trinary constraints, etc.

e Utility for each m-ary constraint drawn from a uniform
distribution in the domain [0, 100 x m].

e Width for each constraint on each issue drawn from a
uniform distribution in the domain [2, 5].

e Settings for simulated annealing: initial tempreature
To = 30. Number of iterations: 30.

e Maximum number of bids generated per agent n, =
200 x n.

e Parameters for @ calculation: a =1,8=1.

e Number of constraints taken for tournament selection
n. = min (20,1/2)

e Maximum number of bid combinations at the media-
tor: np. = 6400000. For Ito’s mediator, this is achieved
by limiting the number of bids sent to the mediator by
each agent to "¢/6400000.

e Number of iterations for the expressive protocol: 1 (no
expressiveness) to 7.

e Reservation utility value for the optimizer used to com-
pute optimal solution: 7,=100.

e Utility for a failed negotiation: 0.

Experiments were coded in Java and run on a 2x3.2 Ghz
Qad-Core Intel Xeon processor with 4Gb memory under Mac
OS X 10.5.4.

6.2 Experimental Results

Figure 5 shows the results of the single-shot experiments.
Each graphic presents a box-plot for the final outcomes of
100 runs of the experiment. The horizontal axis represents
the approach under evaluation: simulated annealing (SA),
probabilistic greedy search, integer programming (BIP) with
tournament selection and maximum weight independent sets
(MWIS) with tournament selection. In the vertical axis we
have represented the optimality rate as notched box and
whisker plots. The boxes have lines for the median and the
25th and 75th percentiles of the optimality rate for each
negotiation (computed as the ratio between the final joint
utility and the optimal joint utility), and the whiskers show
adjacent values in the data. Outliers are displayed with a
plus (+) sign. Notches display the variability of the me-
dian between samples. We can see that, although the simu-
lated annealing approach sometimes achieves high optimal-
ity rates, the median is zero, which means that at least half
of the times this approach fails to find an agreement. For
4 agents and 4 issues (Figure 5.(a)), all our proposed ap-
proaches yield a significant improvement over simulated an-
nealing, although greedy search has clearly lower optimality
rate than the tournament-selection based approaches. Inte-
ger programming and MWIS yield very similar results, since
they both perform bidding via utility maximization over a Q-
based selected subset of contraints. Both approaches achieve
median optimality rates near 0.9. All proposed approaches
reduce the failure rate to zero (there are no zero optimal-
ity results), which is a significant achievement taking into
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Figure 5: Box-plots of the optimality rate for the different approaches: a) 4 agents, 4 issues, b) 6 agents, 6

issues, c) 8 agents, 8 issues.

Table 1: Expressive protocol for 8 agents, 8 issues

Table 2: Expressive protocol for 10 agents, 10 issues

Time Ratio Failure Rate Time Ratio Failure Rate
# of iterations | median | conf. interval % # of iterations | median | conf. interval %
1 0.3653 0.2988,0.4238 27% 1 0.0000 0.0000, 0.0000 78%
2 0.4249 0.4069, 0.4429 14% 3 0.0000 0.0000, 0.0442 53%
4 0.4399 0.4246, 0.4551 7% 5 0.2519 0.2039, 0.3000 43%
7 0.2806 0.2310, 0.3160 32%

account that failure rate for simulated annealing is above
50%. As the number of agents and issues under negotiation
increases (Figure 5.(b) and (c)), the failure rate of both in-
teger programming and MWIS progressively increases. On
the other hand, the greedy search approach keeps its zero
failure rate. The median optimality rates for all proposed
approaches decrease as the number of agents and issues in-
creases, but always performing better than the reference ap-
proach. From these results we can conclude that the quality
factor Q can be used to improve optimality rate and fail-
ure rate in highly-nonlinear utility spaces, and that tourna-
ment constraint selection is a suitable way to select which
constraints to use for bid generation. Probabilistic greedy
search, though yields lower optimality rates than the other
approaches, may be the choice for scenarios where very low
(or even zero) failure rates are needed for high number of
agents and issues.

The effects of using our expressive protocol with relax cy-
cles can be seen in Table 1 and Table 2, which show the re-
sults of the experiments using the MWIS approach and the
expressive negotiation protocol. For 8 agents and 8 issues,
we can see there is a significant improvement of the optimal-
ity rate in the second iteration, and that successive iterations
produce slight increases of the optimality rate while yield-
ing significant improvements in terms of failure rate. For
the worst-case scenario of 10 agents and 10 issues we can
see that, although using the inexpressive protocol (1 itera-
tion) almost all negotiations fail, failure rate is significantly
reduced by running successive relax cycles. From these re-
sults we can conclude that our expressive protocol can be
used to improve optimality rate, and specially failure rate in
negotiations in highly-nonlinear scenarios.

Regarding performance, Table 3 shows the medians and
the 95% confidence intervals for the ratio between the ne-
gotiation time of our proposed approaches and the negoti-
ation time of the approach in [8]. Negotiation times vary

Table 3: Performance for 8 agents, 8 issues

Time Ratio
Approach median | conf. interval
greedy search 4.404 [4.157, 4.65]
integer programming | 82.76 [81.59, 83, 93]
MWIS 0.71 | [0.7098, 0.7226]

greatly in the different scenarios, not only because of the di-
rectly added complexity as the number of agents and issues
increase, but also because the time spent by the mediator
increases with the number of viable solutions found. The
highest time values, which are shown in the table, were ob-
tained for 8 agents and 8 issues. We can see that MWIS re-
sults in negotiation times that are significantly shorter than
those obtained using simulated annealing, and greedy search
yields times that are significantly longer. However, maxi-
mum obtained negotiation time for greedy search is under
30 seconds, which may be acceptable for some applications,
specially if very low or zero failure rates are needed. Bi-
nary integer programming takes significantly longer to ne-
gotiate, and since it yields similar results to MWIS in terms
of optimality rate and failure rate, it does not provide any
advantage.

7. DISCUSSION AND RELATED WORK

The seminal paper which opened the field for this work
is Ito et al. paper on multi-issue negotiation in nonlinear
utility spaces [8]. They proposed a single-shot, auction-
based protocol which uses simulated annealing to identify
high utility regions in the agent’s utility spaces to be sent as
bids to a mediator. We use this work as an starting point to
provide effective bidding and deal identification mechanisms
for highly-nonlinear utility spaces, where the “narrowness” of
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the agents’ high-utility regions makes the failure rate of their
approach drastically higher. Instead of performing a direct
sampling of the contract space, our proposed approaches
take advantage of the structure of the agent’s preferences
and use different techniques over the constraint space to
generate bids. Integer programming and maximum weight
independent sets have been successfully used in combina-
torial auctions [6, 4]. We combine these approaches with a
kind of tournament selection [14] to provide effective bidding
mechanisms in highly-nonlinear scenarios. This tournament
selection is biased by using a quality factor @, which bal-
ances bid utility and bid volume to take into account the
likelihood of the bid resulting in a deal. This is a somewhat
similar approach to the notion of wiability seen in [11] for
fuzzy-constraint based negotiation or the similarity criteria
used in [3] for linear utility spaces.

Other technique for addressing non-linearity in negotia-
tion is to approximate the utility functions by means of lin-
ear regression techniques or average weighting methods, as
proposed in [5]. However, as authors acknowledge, these
approaches are not useful for highly-nonlinear spaces.

Finally, there are other works which suggest the use of ex-
pressive negotiation protocols in multi-agent negotiations.
[13] uses gradient information to bias the search for solu-
tions in linear unmediated negotiation, and [12] uses relax
requirements in bilateral buyer-seller negotiations.

8. CONCLUSIONS AND FUTURE WORK

The performance of existing auction-based approaches for
negotiation in nonlinear scenarios dramatically decreases if
confronted with highly nonlinear scenarios where the nego-
tiating agents’ high utility regions are very “narrow” and so
it is very unlikely that high utility bids overlap. This pa-
per presents a set of bidding mechanisms which balance bid
“width” and bid utility, and an expressive negotiation proto-
col which allow the negotiating agents to progressively im-
prove their bids as the protocol iterates. The experiments
show that the proposed mechanisms significantly improve
the previous approaches in highly nonlinear utility spaces
in terms of failure rate and optimality. However, there is
still plenty of research to be done in this area. The impact
of the parameters « and 3 in the optimality rate yielded by
the different approaches should be analyzed. In addition, we
are interested on designing and evaluating different bid re-
lax mechanisms apart from the one proposed here. Finally,
we are working on the generalization of these approaches for
other utility function types.
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